Connexion

Connexion à votre compte

Identifiant
Mot de passe
Maintenir la connexion active sur ce site

Créer un compte

Pour valider ce formulaire, vous devez remplir tous les champs.
Nom
Identifiant
Mot de passe
Répétez le mot de passe
Adresse e-mail
Répétez l'adresse e-mail
Captcha
Vous êtes ici : AccueilCLASSESCorrection des exercices nombres complexes : Formes d’écriture
Terminale
C & E & D & TI
Mathématiques
Correction exercice
Bonjour ! Groupe telegram de camerecole, soumettrez-y toutes vos préoccupations. forum telegram

Correction exercice I

Crierons sous forme trigonométrique les nombres complexes suivants :
a) \({Z_1} = 1 - i\sqrt 3 \) ;
\(\left| {{Z_1}} \right| = 2\)
\(\left\{ \begin{array}{l}\cos \theta = \frac{1}{2}\\\sin \theta = \frac{{ - \sqrt 3 }}{2}\end{array} \right.\) \( \Rightarrow \theta = \) \( - \frac{\pi }{3}\)
\({Z_1} = 2\) \(\left[ {\cos \left( { - \frac{\pi }{3}} \right) + i\sin \left( { - \frac{\pi }{3}} \right)} \right]\)

b) \({Z_2} = 2 + 2i\) ;
\(\left| {{Z_2}} \right| = 2\sqrt 2 \)
\(\left\{ \begin{array}{l}\cos \theta = \frac{2}{{2\sqrt 2 }}\\\sin \theta = \frac{2}{{2\sqrt 2 }}
\end{array} \right.\) \( \Rightarrow \theta = \frac{\pi }{4}\)
\({Z_2} = 2\) \(\left[ {\cos \left( {\frac{\pi }{4}} \right) + i\sin \left( {\frac{\pi }{4}} \right)} \right]\)

c) \({Z_3} = - 1 - i\sqrt 3 \) ;
\(\left| {{Z_3}} \right| = 2\)
\(\left\{ \begin{array}{l}\cos \theta = \frac{{ - 1}}{2}\\\sin \theta = \frac{{ - \sqrt 3 }}{2}
\end{array} \right.\) \( \Rightarrow \theta = \pi \) \( + \frac{\pi }{3} = \frac{{4\pi }}{3}\)
\({Z_2} = 2\) \(\left[ {\cos \left( {\frac{{4\pi }}{3}} \right) + i\sin \left( {\frac{{4\pi }}{3}} \right)} \right]\)

d) \({Z_4} = \frac{{{Z_1}}}{{{Z_2}}}\) ;
\(\left| {{Z_4}} \right| = \frac{{\sqrt 2 }}{2}\)
\({Z_4} = \frac{{\sqrt 2 }}{2}\)
\(\left[ {\cos \left( {\frac{{5\pi }}{{12}}} \right) + i\sin \left( {\frac{{5\pi }}{{12}}} \right)} \right]\)

e) \({Z_5} = {\left( {{Z_2}} \right)^2} \times {Z_3}\) ;
\(\left| {{Z_5}} \right| = 16\)
\(\arg \left( {{Z_5}} \right) = \frac{{11\pi }}{6}\)
\({Z_5} = 16\) \(\left[ {\cos \left( {\frac{{11\pi }}{6}} \right) + i\sin \left( {\frac{{11\pi }}{6}} \right)} \right]\)

f) \({Z_6} = {\left( {\frac{{{Z_3}}}{{{Z_1}}}} \right)^3}\).
\(\left| {{Z_6}} \right| = 1\)
\(\arg \left( {{Z_6}} \right) = \frac{{4\pi }}{3}\)
\({Z_6} = 1\) \(\left[ {\cos \left( {\frac{{4\pi }}{3}} \right) + i\sin \left( {\frac{{4\pi }}{3}} \right)} \right]\)

Correction exercice II

Donnons la forme polaire des nombres complexes suivants
a) \({Z_1} = - 1 - i\) ;
\(\left| {{Z_1}} \right| = \sqrt 2 \)
\(\theta = \frac{{5\pi }}{4}\)
\({Z_1} = \) \(\left[ {\sqrt 2 ;\frac{{5\pi }}{4}} \right]\)

b) \({Z_2} = - \frac{1}{2} + \frac{i}{2}\) ;
\(\left| {{Z_2}} \right| = \frac{{\sqrt 2 }}{2}\)
\(\theta = \frac{{3\pi }}{4}\)
\({Z_2} = \) \(\left[ {\frac{{\sqrt 2 }}{2};\frac{{3\pi }}{4}} \right]\)

c) \({Z_3} = 1 - i\sqrt 3 \) ;
\(\left| {{Z_3}} \right| = 2\)
\(\theta = - \frac{\pi }{3}\)
\({Z_3} = \) \(\left[ {2; - \frac{\pi }{3}} \right]\)

d) \({Z_1} \times {Z_2}\) ;
\(\left| {{Z_1} \times {Z_2}} \right| = \) \(\left| {{Z_1}} \right| \times \left| {{Z_2}} \right|\) \( = \sqrt 2 \times \frac{{\sqrt 2 }}{2}\) \( = 1\)
\(\arg \left( {{Z_1} \times {Z_2}} \right)\) \( = \arg \left( {{Z_1}} \right)\) \( + \arg \left( {{Z_2}} \right)\) \( = \frac{{5\pi }}{4} + \) \(\frac{{3\pi }}{4} = 2\pi \)
\({Z_1} \times {Z_2} = \) \(\left[ {1;2\pi } \right]\)

e) \(\frac{{{Z_3}}}{{{Z_2}}}\) ;
\(\left| {\frac{{{Z_3}}}{{{Z_2}}}} \right| = \) \(\frac{{\left| {{Z_3}} \right|}}{{\left| {{Z_2}} \right|}} = \) \(\frac{2}{{\frac{{\sqrt 2 }}{2}}} = \) \(2\sqrt 2 \)
\(\arg \left( {\frac{{{Z_3}}}{{{Z_2}}}} \right) = \) \(\arg \left( {{Z_1}} \right) - \) \(\arg \left( {{Z_2}} \right) = \) \( - \frac{{13\pi }}{{12}}\)
\(\frac{{{Z_3}}}{{{Z_2}}} = \) \(\left[ {2\sqrt 2 ; - \frac{{13\pi }}{{12}}} \right]\)

f) \(Z_3^4\).
\(\left| {Z_3^4} \right| = \) \({\left| {{Z_3}} \right|^4} = \) \({2^4}\)
\(\arg \left( {Z_3^4} \right) = \) \(4\arg \left( {{Z_3}} \right) = \) \( - \frac{{4\pi }}{3}\)
\(Z_3^4 = \) \(\left[ {{2^4}; - \frac{{4\pi }}{3}} \right]\)

Correction exercice III

Complétons le tableau suivant

Formes algé briques de \(Z\) \( - 5(1\) \( + i\sqrt 3 )\) \(2( - 1 + \) \(i\sqrt 3 )\) \(\sqrt 2 (\) \(1 - i)\)
Formes trigono métriques de \(Z\) \(10[\) \(\cos \left( {\frac{{4\pi }}{3}} \right)\) \( + i\) \(\sin \left( {\frac{{4\pi }}{3}} \right)]\) \(4[\) \(\cos \left( {\frac{{2\pi }}{3}} \right)\) \( + i\) \(\sin \left( {\frac{{2\pi }}{3}} \right)]\) \(2(\) \(\cos \left( { - \frac{\pi }{4}} \right)\) \( + i\) \(\sin \left( { - \frac{\pi }{4}} \right))\)
Formes expo nentielles de \(Z\) \(10{e^{i\frac{{4\pi }}{2}}}\) \(4{e^{i\left( {\frac{{2\pi }}{3}} \right)}}\) \(2{e^{\frac{{ - i\pi }}{4}}}\)

Correction exercice IV

1) Ecrirons \({Z_1}\), \({Z_2}\) et \({Z_3}\) sous forme trigonométrique.
\({Z_1} = \sqrt 2 [\) \(\cos \left( { - \frac{\pi }{6}} \right)\) \( + i\) \(\sin \left( { - \frac{\pi }{6}} \right)]\)
\({Z_2} = \sqrt 2 [\) \(\cos \left( { - \frac{\pi }{4}} \right)\) \( + i\) \(\sin \left( { - \frac{\pi }{4}} \right)]\)
\({Z_3} = \) \(\cos \left( {\frac{\pi }{{12}}} \right) + \) \(i\sin \left( {\frac{\pi }{{12}}} \right)\)
2) Ecrirons \({Z_3}\) sous forme algébrique.
\({Z_3} = \) \(\frac{{\sqrt 6 + \sqrt 2 }}{4}\) \( + i\frac{{\sqrt 6 - \sqrt 2 }}{4}\)
3) Déduisons les valeurs exactes de \(\cos \frac{\pi }{{12}}\) et \(\sin \frac{\pi }{{12}}\)
Par identification des formes trigonométrique et algébrique, on a :
\(\cos\left( {\frac{\pi }{{12}}} \right) = \) \(\frac{{\sqrt 6 + \sqrt 2 }}{4}\)
\(\sin \left( {\frac{\pi }{{12}}} \right) = \) \(\frac{{\sqrt 6 - \sqrt 2 }}{4}\)
4) Calculons \({\left( {{Z_3}} \right)^{24}}\)
En utilisant la formule de Moivre
\({\left( {{Z_3}} \right)^{24}} = \) \(\cos \left( {\frac{{24\pi }}{{12}}} \right)\) \( + i\sin \left( {\frac{{24\pi }}{{12}}} \right)\) \( = \cos \left( {2\pi } \right)\) \( + i\sin \left( {2\pi } \right)\) \( = 1\)